dev-master
9999999-devK-Means algorithm for PHP
LGPL
The Requires
- php >=5.4.0
php utility kmeans kmeans plus plus
1.0.0
1.0.0.0K-Means algorithm for PHP
LGPL
The Requires
- php >=5.4.0
php utility kmeans kmeans plus plus
Wallogit.com
2017 © Pedro Peláez
K-Means algorithm for PHP
Clustering made simple, (*1)
Read more on Wikipedia, (*3)
PHP K-Means, like its name suggest, is an implementation of K-Means and K-Means++ algorithms for the PHP plateform. It works with an unlimited number of dimentions., (*4)
Given the following points of R², (*5)
$points = [
[80,55],[86,59],[19,85],[41,47],[57,58],
[76,22],[94,60],[13,93],[90,48],[52,54],
[62,46],[88,44],[85,24],[63,14],[51,40],
[75,31],[86,62],[81,95],[47,22],[43,95],
[71,19],[17,65],[69,21],[59,60],[59,12],
[15,22],[49,93],[56,35],[18,20],[39,59],
[50,15],[81,36],[67,62],[32,15],[75,65],
[10,47],[75,18],[13,45],[30,62],[95,79],
[64,11],[92,14],[94,49],[39,13],[60,68],
[62,10],[74,44],[37,42],[97,60],[47,73],
];
We want to find 3 clusters:, (*6)
// create a 2 dimentionnal space and fill it
$space = new KMeans\Space(2);
foreach ($points as $point)
$space->addPoint($point);
// resolve 3 clusters
$clusters = $space->solve(3);
Now we can retrieve each cluster's centroid (the average meaning amongts its points) and all the points in it:, (*7)
foreach ($clusters as $i => $cluster)
printf("Cluster %d [%d,%d]: %d points\n", $i, $cluster[0], $cluster[1], count($cluster));
Example of output:, (*8)
Cluster 0 [79,58]: 18 points Cluster 1 [57,19]: 19 points Cluster 2 [31,66]: 13 points
K-Means algorithm is non-deterministic so you may get different results when running it multiple times with the same data. The more points you add in the space, the more accurate the result will be., (*9)
You are strongly advised to read the Wikipedia article thoroughly before using this library., (*10)
When triggering the Kmeans\Space::solve method, you may provide an alternative seeding method in order to initialize the clusters with the David Arthur and Sergei Vassilvitskii algorithm which avoids poor clustering results., (*11)
// resolve 3 clusters using David Arthur and Sergei Vassilvitskii seeding algorithm $clusters = $space->solve(3, KMeans\Space::SEED_DASV);
$x = $point[0]; $y = $point[1]; // or list($x,$y) = $point->getCoordinates();
foreach ($cluster as $point)
printf('[%d,%d]', $point[0], $point[1]);
$space->addPoint($coordinate, $data);
$data = $space[$point];
Each iteration step can be monitored using a callback function passed to Kmeans\Space::solve:, (*12)
$clusters = $space->solve(3, KMeans\Space::SEED_DEFAULT, function($space, $clusters) {
static $iterations = 0;
printf("Iteration: %d\n", ++$iterations);
foreach ($clusters as $i => $cluster)
printf("Cluster %d [%d,%d]: %d points\n", $i, $cluster[0], $cluster[1], count($cluster));
});
K-Means algorithm for PHP
LGPL
php utility kmeans kmeans plus plus
K-Means algorithm for PHP
LGPL
php utility kmeans kmeans plus plus